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Abstract: The intermolecular interaction energy of the model system of the watewnophane complex

was analyzed. The water molecule has four hydrogen bonds, with the two hydrogen-donating phenolic hydroxy
groups and two hydrogen-accepting oxygen atoms of the poly-oxyethylene chain of the crownophane in the
complex. The MP2/6-311G(2d,2p) level calculations of the model system of the complex (hydrogen donating
unit + hydrogen accepting unit water) indicate that the binding energy of the water is 21.85 kcal/mol and
that the hydrogen bond cooperativity increases the binding energy as much as 3.67 kcal/mol. The calculated
interaction energies depend on the basis set, while the basis set dependence of the cooperative increment is
negligible. Most of the cooperative increment is covered by the HF level calculation, which suggests that the
major source of the hydrogen bond cooperativity in this system has its origin in induction. The BLYP/
6-311G** and PW91/6-311G** level interaction energies of the model system are close to the MP2/6-311G**
interaction energies, which suggests that the DFT calculations with these functionals are useful methods to
evaluated the interactions of hydrogen bonded systems.

Introduction of the structures and properties of biological systems and for
rational design of drugs and artificial host molecules.

Different types of mechanisms, for example hydrogen bond
cooperativity?816.17conformational changés® secondary elec-
trostatic effect$;'® and structure tighteniny;!* exist for
cooperative binding. The hydrogen bond cooperativity is the
mutual enhancement of multiple hydrogen bo#8s?216.17The
additional hydrogen bonds are enhanced by an already formed
hydrogen bond and the additional hydrogen bonds also enhance
the already formed hydrogen bond. Hegtiest complexes often
* Address correspondence to this author. E-mail: e-mail s.tsuzuki@ have multiple hydrogen bonds. Estimation of the size of the

The phenomenon of cooperativity is important in a variety
of molecular recognition processes?® The study of cooperative
enhancement of binding is a topic of great current interest
because it plays an important role in the determination of the
stability of many systems such as DNA duplexes, folded
proteins, and ligandreceptor complexes. The structures of these
systems are stabilized by networks of weak interactions. Detailed
information on the cooperativity is important for understanding
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crownophane complex in crystaland capping hydrogen atoms were
added. The positions of all hydrogen atoms were optimized at the HF/
6-31G* level. The Becke's exchange and Lee, Yang, and Parr's
correlation functionals (BLYPJ?3! Becke’s 3 parameter functional
combined with Lee, Yang, and Parr’s correlation functional (B3L¥F),

and Perdew and Wang's exchange and correlation functionals (P$¥v91)
were used for the density functional calculations.

Results and Discussion

Basis Set and Electron Correlation Correction.lIt is well-
known that the calculated intermolecular interaction energies
determined with the ab initio method depend on the basis set
and electron correlation correction proced#re®® The effects
] of basis set are large in the calculations of van der Waals systems
Figure 1. The X-ray structure of the watecrownophane complex. (rare gas dimers and hydrocarbon diméPs§? in which
dispersion is the dominant attractive interaction, while the basis
set effects are relatively small in the calculations of hydrogen
bonded system®40 in which electrostatic is the dominant
attractive interaction. Electron correlation substantially increases
the calculated bonding energies of hydrogen bonded sySteffis,
while the effects of electron correlation beyond MP2 are not
large. Recently reported CCSD(T) calculations of the five
hydrogen bonded systems B+MeOH, H,O—Me,O, H,0—
H,CO, MeOH-MeOH, and HCOOH-HCOOH complexes)
with the cc-pVTZ basis set show that taeCCSD(T) values
(the difference between the CCSD(T) and MP2 interaction
energies) are negligible (less than 0.2 kcal/mbl).

The interaction energies of the-Ad,0 and B-H,0 systems
Figure 2. The model system used for this work. (Figure 2) were calculated with the 6-31G*, 6-311G**, 6-311G-

(2d,p), and 6-311G(2d,2p) basis sets to evaluate the basis set
magnitude of the enhancement only by experimental measure-effects. The interaction of the AH,O system corresponds to
ments. In this paper we have carried out high-level ab initio the interaction between the water and the hydrogen-donating
calculations of a model system of the Wa’ferownophane groups of the Crownophane_ The interaction of theI-EO sys-
complex (Figure 2) for the quantitative evaluation of the tem corresponds to the interaction between the water and the
cooperative enhancement and for the purpose of understandinthydrogen-accepting groups of the crownophane. The calculated
the origin of the enhancement. Our ab initio calculations have MP2 interaction energies depend on the basis set as summarized
shown that the hydrogen bond cooperativity significantly in Table 1. The small 6-31G* basis set overestimates the attrac-
increases the binding energy and that the major source of thetion compared to other basis sets. However, the basis set

enhancement has its origin in induction (induced polarization). dependence of the MP2 interaction energies is not large, if basis
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Table 1. The Calculated Interaction Energies of the Model System of the W&mwnophane Compléx

method E(A—H,0) E(B—H.0) E(AB —H.0) Ecool®
HF/6-311G** —7.46 (3.97) —7.35 (5.48) —18.44 (5.61) —3.62
HF/6-311G(2d,2p) —6.25 (4.02) —6.36 (5.73) ~16.23 (5.66) ~3.62
MP2/6-31G* —10.43 (5.99) —9.21 (8.58) —23.58 (9.17) —3.93
MP2/6-311G** —9.40 (7.58) —8.72 (10.19) —21.76 (10.47) —3.64
MP2/6-311G(2d,p) —9.55 (7.40) —8.80 (9.88) —21.99 (9.88) ~3.63
MP2/6-311G(2d,2p) —9.20 (7.58) —8.98 (10.37) —21.85 (10.34) —3.67
BLYP/6-311G** —8.45 (7.18) —6.87 (9.55) —19.52 (9.84) —4.20
B3LYP/6-311G** —9.51 (6.09) —8.18 (8.19) —21.72 (8.45) —4.03
PWO1/6-311G** —11.03 (6.84) —9.34(9.11) —23.84 (9.49) —3.48

aEnergies in kcal/mol. BSSE-corrected interaction energies. The values in parentheses are BSSE values. The geometry of the model system is
shown in Figure 2° The cooperative increment of the binding enerByo, = E(AB—H;0) — [E(A—H,0) + E(B—H,0)].

sets larger than the 6-311G** are used. The Hartfeeck (HF) Flament??2 They reported that the three-body terms of these
interaction energies of the-AH,0 and B-H,0 systems with trimers (cooperative increments) were 2.9 and 3.2 kcal/mol,
the 6-311G(2d,2p) basis set are5.25 and—6.36 kcal/mol, respectively. The calculations show that hydrogen bond coop-
respectively. The MP2 ones are9.20 and—8.98 kcal/mol, erativity is significantly important for the stabilization of the
respectively. The HF calculations underestimate the attraction water-crownophane complex. It should be noted, however, that
as much as 2.95 and 2.62 kcal/mol, respectively, as the HFstructural tightening would occur in the complex by the
calculation cannot evaluate the attractive dispersion interac-formation of the hydrogen bonds and therefore some of the
tion.2441 The largest part of the attractive interactions in these cooperative binding would originate also in structural tightening
systems are covered by the HF calculations, which indicatesin the real system.
that dispersion is not important and that electrostatics are mainly It is interesting to note that most of tl&qp is covered by
responsible for the attraction in these systems. the HF level calculations. The HF/6-311G(2d,2p) lelglopis
Cooperative Enhancement of the Water Binding.The —3.62 kcal/mol. This result suggests that the major source of
calculated MP2/6-311G(2d,2p) interaction energy of the the hydrogen bond cooperativity in this system has its origin in
A—H,0 system E(A—H,0) = —9.20 kcal/mol] is not largely induction (induced polarization). The calculated charge distribu-
different from that of the B-H,O systemsH(B—H,0) = —8.98 tions also indicate that the water molecule is strongly polarized
kcal/mol]. TheE(A—H20) andE(B—H20) values are approxi- by the hydrogen bonds. Mulliken population anal§iwas
mately twice as large as the bonding enerDy) (of the water carried out by using the HF/6-311G** wave functions. The
dimer (5 kcal/mol}3*42The interaction energy of the ABH,0 calculated charges on the oxygen and the two hydrogen atoms
system E(AB—H;0)] was also calculated. The(AB—H;0) of the water in the ABHO complex are-0.61, 0.32, and 0.31
is the bonding energy of ¥ with the AB complex (hydro- e (le= 1.602 x 10719 C), respectively, while those of an
gen-donating and -accepting units of the crownophane). Theisolated water (HF/6-31G* geometry) aré.50, 0.25, and 0.25

E(AB—H0) is given by e, respectively.
Density Functional Calculations. Although MP2 calcula-
E(AB—H,0) = E(ABH,0) — [E(AB) + E(H,0)] tions provide sufficiently accurate interaction energies of

hydrogen bonded systerfs;*® MP2 calculations are still too

The E(ABH20), E(AB), and E(H,O) are the calculated  computationally demanding to study the interactions of large
energies of the ABED and AB complexes and 0, respec-  systems such as the biological systems. If density functional
tively. The E(AB—H0) calculated at the MP2/6-311G(2d,2p) calculations, which require nearly the same amount of computer
level is —21.85 kcal/mol. TheE(AB—H;0) is larger (more resources as HF calculations, can provide sufficiently accurate
negative) than the sum of thE(A—H;0) and E(B—H-0) interaction energies, we can apply density functional calculations
(—18.18 kcal/mol). The hydrogen bond cooperativity signifi- for the quantitative analysis of large biological systems such as
cantly increases the binding energy of the water. The cooperativeprotein and DNA.

increment Ecoop) is given by The E(A—H,0), E(B—H,0), and E(AB—H,0) were also
calculated by the density functional methods by using the BLYP,
Ecoop= E(AB—H,0) — [E(A—H,0) + E(B—H,0)] B3LYP, and PW91 functionals. The 6-311G** basis set was

used for the calculations. The calculated interaction energies

The Ecoop value calculated at the MP2/6-311G(2d,2p) level are compared with the MP2 interaction energies to evaluate the
is —3.67 kcal/mol. Although thé&(A—H;0), E(B—H;0), and accuracy of the density functional calculations as summarized
E(AB—H:0) values substantially depend on the basis set, thein Table 1. The interaction energies calculated with these
basis set dependence of tBgyp is very small (less than 0.3 functionals are close to the MP2 interaction energies. The
kcal/mol). TheEcoop value is about 70% of the bonding energy  calculatedE.qop values by the density functional calculations
of the water dimer (5 kcal/mol). The lard&oop value shows  (—4.20,—4.03, and—3.48 kcal/mol for the BLYP, B3LYP, and
that the cooperative enhancement is significantly important for pw91, respectively) are not largely different from the MP2/
the stabilization of the watercrownophane complex. The  6-311G** value (-3.64 kcal/mol). Surprisingly good perfor-
similar amounts of cooperative enhancement of the binding havemance of the density functional calculations suggests that the
been reported from the MP2/6-3t6(2d,2p) level calculations  density functional calculations are potentially useful methods
of the water and methanol homo trimers by Masella and for studying hydrogen bonded systems and that these methods

(41) Stone, A. JThe theory of intermolecular force€larendon Press: would be the only possibility fo_r evaluating interactions of large
Oxford, 1996. systems, where MP2 calculations are too demantfify.

(42) Curtiss, L. A,; Frurip, D. J.; Blander, M. Chem. Physl979 71,
2703. (43) Mulliken, R. S.J. Chem. Physl955 23, 1833.
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Conclusion The calculated B3LYP and PW91 interaction energies are
I . - close to the MP2 interaction energies. The good performance

Our ap !n|t|o_ cqlpulatlon_s indicate that Fhe. hydrogen bond suggests that the DFT calculations with these functionals are
cooperativity significantly increases the binding of the water potentially useful methods for studying hydrogen bonded sys-

with the crownophane which has the two hydrogen-donating temg ang that these methods would be the only possibility for
phenolic hydroxy groups and the hydrogen-accepting poly- ey ajyating the interactions of large systems where MP2 calcula-

o.xye.thylene chailn. The calculated cooperative incrgment Of, the ions are too demanding. We would like to emphasize that recent
binding energy is 3.67 kcal/mol. The calculated interaction remarkaple improvements of the methodologies of molecular
energies of the model system depend on the basis set, while, i) calculations and computer hardware enable us to apply
the basis set dependence of the cooperative increment isqqmntationally demanding high-level ab initio molecular orbital
negligible. Most of the cooperative increment is covered by the calculations for studying the binding of the hestuest complex

HF calculation, which suggests that the major source of the g that ab initio calculation is now becoming a very powerful
hydrogen bond cooperativity in this system has its origin in ./ in the study of hostguest interactions.

induction (induced polarization). The calculated atomic charge
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